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Dipole electromagnetic radiation in a Schwarzschild space : 
the wavetail to order m/r 

A Papapetrou 

Laboratoire de Physique Theorique, Institut Henri Poincare, 11 rue Pierre et Marie Curie, 
75231 Paris cedex 05. France 

Received 14 June 1974 

Abstract. We consider Maxwell’s equations in a Schwarzschild space and we determine the 
retarded solution to order m2/r2  of an electric dipole located at the centre of symmetry. The 
dipole moment At) is assumed to be variable in the interval t, < t < t, and to have the con- 
stantvaluesp,fort < t,andp,fort > t,. Wefindthatfort + cc thefieldtendsasymptotically 
to the static field corresponding to a constant dipole p, even in the case p2 # p1 . This is due 
to the fact that the Newman-Penrose conservation laws are valid only in some region of the 
space-time adjacent to future null-infinity. 

The formulae for the wavetail (in the region U > t,) to order m/r are discussed in some 
detail. 

1. Introduction 

Consider the Maxwell theory in Minkowski space and a bounded source which is 
time-dependent only during a finite time interval. The retarded field produced by such 
a source has the form shown schematically in figure 1 ; the field is time-dependent only 
during a finite interval of retarded time, corresponding to the time-dependent state 
of the source. 

Stationary 

Figure 1. No tails in Minkowski space. 
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In general relativity the situation will be different. If we consider again a bounded 
source which is initially stationary and then in a state of forced vibrations during a 
finite time interval, the retarded field will be again stationary initially, but it will behave 
differently after the end of the forced vibrations. Indeed, in general relativity, we have 
a curved space and nonlinear field equations. Each of these features leads to a scattering 
of the radiation, because of which the field and its source will continue being time- 
dependent after the end of the forced vibrations. However, it is plausible to assume, and 
it has usually been assumed, that the scattered radiation will die away and the field will 
tend to a time-independent limit asymptotically for t + CO. 

The situation appeared to be modified in a significant manner by the discovery of 
the Newman-Penrose conservation laws (Newman and Penrose 1965). These conser- 
vation laws are derived from the assumption that the Weyl scalars YA can be written, 
at large distances from the source, in the form: 

It is then found that five complex quantities derived from the development in spin 
harmonics of YE are constant. In the case of a time-independent field the detailed dis- 
cussion of the conserved quantities has shown that these quantities are some simple 
combinations of the lowest multipole moments of the system (Newman and Penrose 
1968). We thus arrive at the following important restriction : an initially stationary 
system cannot become stationary again unless the initial and the final configuration 
correspond to the same values of these conserved quantities. 

A similar situation presents itself in the Einstein-Maxwell theory. In this theory 
there are, besides the gravitational, also some electromagnetic conserved quantities, 
which are derived from the assumption that at large distancesfrom the source the electro- 
magnetic scalars @A can be written in the form : 

the conserved quantities being now related to at. In the case of a stationary field, 
these quantities have been found to be some simple combinations of the lowest gravi- 
tational and electromagnetic multipoles of the system (Exton et al 1969). We now have 
the following restriction : an initially stationary Einstein-Maxwell field cannot again 
become stationary unless the initial and final configurations correspond to the same 
values of the gravitational and electromagnetic conserved quantities. 

These consequences of the Newman-Penrose conservation laws are quite puzzling 
and several attempts have been made in order to clarify their physical meaning. As it 
should be expected, trying to reach an understanding of this physical meaning on the 
basis of the exact field equations constitutes an extremely difficult problem. We face 
an essentially simpler mathematical problem if we consider a test field, superimposed 
on a given highly symmetric background field. The simplification is due to the fact that 
in the test field approximation we have to deal with linear field equations; the scattering 
of the radiation is now due to the curvature of the space described by the background 
metric. 
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The case which will be considered in this paper is the following : a test electromagnetic 
field is superimposed on the Schwarzschild metric, considered as a solution ofthe Einstein- 
Maxwell field equations (vanishing background electromagnetic field). 

In the case of a stationary electromagnetic test field of this kind the conserved electro- 
magnetic quantity is found to be the product mp, m being the Schwarzschild mass and p 
the electric dipole moment which is the source of the test field. Since in the test field 
approximation the mass m is constant, it follows from the Newman-Penrose conser- 
vation law that an initially stationary test field of this kind can again become stationary 
only if the electric dipole moment p of the system has the same value in the final as well 
as in the initial configuration. It follows that in order to obtain a clarification ofthe situa- 
tion it will be sufficient to discuss the retarded field of an electric dipole in the Schwarzs- 
child background metric. 

As we shall show in this paper, it is possible to determine the retarded field of an 
electric dipole which is located at the centre of symmetry and whose moment p is an 
arbitrarily given function of time. The conclusions, which will be obtained by the dis- 
cussion of this field, are stated here in a condensed form. 

(i) The quantities QA can be written in the form (1) only in a certain region of the 
space-time adjacent to the future null-infinity determined by the condition 

U - t - r  
r r  - +o, 

U = t - r being the retarded time. 

moment is constant initially and finally, 
(ii) The field tends to a time-independent limit asymptotically for t + CO if the dipole 

P = P1 for t < t , ,  P = P2 for t  > t , ,  (3) 

even if p1 # p 2 .  
It has to be stressed that the last conclusion is not related to the behaviour of the 

field in the neighbourhood of the null-infinity. Indeed, in order to find whether the field 
tends to a time-independent limit for t + CO one has to consider the behaviour of the 
field at t + CO for any given value of the radial distance r. 

Before entering into the calculations we make the following remark. Instead of a 
test electromagnetic field in the Schwarzschild background metric we could consider 
the exact solution of the field equations of the Maxwell theory formulated in a given 
Riemannian space, which in this case would be the Schwarzschild space. This second 
formulation is conceptually simpler and in a certain sense more interesting, as it is not 
tied up to the test field approximation. From a practical point of view there is no 
difference, as we have in both cases exactly the same field equations. 

2. The field equations 

We shall use the Maxwell equations expressed in terms of the scalars @ A  (Newman and 
Penrose 1962). In the case of the Schwarzschild background metric, which has, in 
radiation coordinates, the form 

ds2 = 1 -- du2 + 2du dr - r2(d02 + sin% d#2), i 2:1 
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the vacuum Maxwell equations are : 

We can obtain an equation containing only Q2 by combining the second and fourth 
of equations (4). The result is : 

We then arrive at a separation of the variables U, r from 8, Cp by writing the elementary 
solution in the form : 

@ 2  = MU, r )x2 (e9  $1. 

The final result for z 2  is found easily to be: 

(7) 

ie x 2  is a spin spherical harmonic of spin weight - 1. For Cp2 we find the equation 

I t  is to be noted that, when we have determined a solution Q2 of (6) for any E # 0, 
respectively from the second and the we can determine the corresponding '3, and 

first of equations (4) without any new integration. Indeed, if we write : 

@ I  = CplCU, r)x l (@ 4 1 3  @o = Cpo(% r)z,(@. 41, (10) 

we find (without normalization) : 

( 1 1 )  

I t  is therefore sufficient to determine 42 by integrating equation (9). 
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The case ofthe dipole, in which we are interested here, corresponds to I = 1. Equation 
(9) takes then the form : 

More exactly we have to determine the retarded field of an electric dipole p which 
satisfies the relations (3), depending arbitrarily on t in the interval t ,  < t < 2 , .  We shall 
simplify the problem by assuming p1 = 0: because of the linearity of the Maxwell 
equations in the test field approximation we simply have in the casep, # Oan additional 
static field which is unimportant for the questions in which we are interested here. The 
retarded character of the field produced by the dipole which has p1 = 0 will be assured if 
the field vanishes in the region defined by the relation u < t ,  . 

We shall assume in this paper that t ,  is finite. The case t ,  -, -E, which has been 
discussed by Press and Bardeen (1971), will not be considered here. 

Again, because of the linearity of the field equations it will be useful to determine the 
retarded field of an electric dipole, the moment of which is a step function : 

p(t) = S(t-t ,) :  

S(x) = 0 for x < 0, S(x) = 1 for x 2 0. 

This is the problem which we shall discuss first. The field of a dipole, whose moment is a 
smooth function oft (with p1 = 0) will be determined in Q 8 by superposition of solutions 
corresponding to dipoles of the form (14). Note that the infinite electromagnetic energy 
emitted by a dipole of the form (14) is eliminated by the superposition of such dipoles 
leading to a smooth function p(t) .  

If we put m = 0 in (9) or (13), we obtain the field equation for Minkowski space. 
The retarded solution of (13) is in this case 

. dP p G -. 
du 

1 1 
2r 

A = A ,  = P(u) + ;P(u, -t ,m : 

The function p(u)  represents the dipole moment as a function of the retarded time U .  We 
shall see that the expression A ,  is the leading term of the solution of equation (13) when 
m # 0. 

3. The static field 

For a constant dipole we obtain from (15) the static field in the case m = 0 :  

1 
AOst = p' p = constant. (15') 

We now consider the case m # 0 and we determine the static solution of equation (1 3), 
describing the field of a constant dipole p .  This solution is obtained immediately if we 
write it in the form of a power series in l/r.  The final result is : 

A =-+-l+--+-- p m p [  3 . 4 2 m  3.4(2m)'  + ...I . 
Sf 2r2 2r3 4 . 5  r 5 . 6  r 

The series appearing in the bracket of (16) converges absolutely for any r > 2m. 
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The solution (16) can also be written in a closed, but rather clumsy, form : 

2m 
2 = - '  

P 3P 
As, = T;g+4m, f (a ) ,  r 

f(4 = -----11-lg(1-a). cc 
cc2 a 1 - a  

6 2  

4. The time-dependent solution of equation (13) to order m/r 

The retarded field of a time-dependent dipole p ( t )  can be written, in the case m # 0, in 
the form : 

A = Ao+u, (18) 
A ,  being given by (15). Introducing the expression (18) into equation (13) we find the 
following equation for a : 

(19) 

Equation (19) shows that at distances r >> 2m the quantity a will be small, of the order 
m/r. It is instructive to discuss first the equation resulting from (19) by linearization with 
respect to m/r. This linearization is obtained at once if we omit the last term in (19). 
The linearized equation is therefore : 

( a , - ) a , ) ( r 2 a , a ) + u + ,  mP = 0. 
r 

The solution of this equation will represent the main part of the scattering of the out- 
going dipole wave on the curvature of the Schwarzschild space. 

The solution of equation (20) can be found if we write it in the form : 

the coefficients u4,  a s , .  . . being functions of U only. Introducing the expression (21) 
in (20) we find the relations : 

n-3 
a = -  2% - 1 for n > 4. . m p ,  a4 = - 4 '  

For the dipole moment (14), 

P(U) = S ( U  - uo), 

the final result is : 

( 2 2 )  

The series appearing in the right-hand side of equation (24) converges absolutely if 

U - U 0  
x = -  < 1  

2r (2.5) 
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and therefore the expression (24)  represents the solution of equation (20)  in the region 
defined by (25) .  The condition (25)  is certainly satisfied in the neighbourhood of null- 
infinity. However, in order to see whether the field tends to a time-independent limit at 
t -+ 00 we need to consider also the case x 2 1 ,  in which the series (24)  cannot be used. 
This difficulty can be overcome easily because the series (24)  is of a very simple type and 
we can write at once its sum in a closed form : 

( 2 6 )  
X 

x - x 2 + x 3 -  . . . = - 
1 + x '  

It follows that we shall have : 

this form of the solution of equation ( 2 0 )  being valid for all values of x .  
When U -+ CO, we have for any given r ,  x -+ 00, and consequently we find from (27)  : 

1 m  
lim A = -+--. 

2r2 2r3 

Comparing this limit with (16)  we see that it is identical, in the approximation considered 
here, with the static field of a dipole having the constant moment p = 1 .  

5. The general form of the solution of equation (19) 

The general structure of the solution of equation (19)  will be found if we assume that 
this solution can also be written in the form (21) .  Introducing (21)  in equation (19)  we 
find now the following recurrence formulae : 

& - - a 4 :  5 -  
mP d, = p' 

n - 3  
d , =  -- an- ,+  

(n - 2)(n  - 3)  
n man - 2 for n > 5 .  

In the case of the dipole (23) ,  which interests us here, we find by integration of (29)  : 

We see that the general term U,, will be a polynomial in (U - u0)/2 

a,,, o n , .  . . being numerical coefficients. Introducing the values (30)  or ( 3 0 )  in ( 2 1 )  we 
find the solution of equation (19)  in the form of a double series, the two variables being 
x and m/r .  The series does certainly converge for sufficiently small values of the variables. 
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Grouping together the terms containing the same power of mjr we obtain the form : 

The coefficients TI, f 2 ,  . . . are power series in x of the form : 

In the preceding section we have determined the series f l  and its sum. The series 
fz, f 3 ,  . . . are essentially more complicated and determining their sum in a similar way 
should be difficult. It will be easier to determine them as solutions of certain differential 
equations which will be established now. 

The basic idea consists in considering A formally as a power series in m : 

A = A o + m A ,  + m 2 A 2  + . . . . (33) 

Comparing (33) with (31) we find at once : 

A ,  = __ I’n + 2 + In = fnS(x) for n 2 1 .  (34) ffl 

Introducing (33) in (13) we find : 

(d,,-+d,)(r2drA,)+~, = 0 :  

The solution A ,  of (35a) is given by (15). From this value of A ,  we calculate the last 
term of equation (35b). The result is: 

We then introduce in (3%) the value of A , ,  given by (34). Taking into account the rela- 
tions : 

(36) 
BX x Bx 1 

?U 2r’  2r r 
- - - - -  - - 

we find finally, in the case of the dipole moment (23), the equation 

J” -, df 
(X + x2)f;’ + (4 + 6x)f; + 4f1 = ~S(X) ,  

dx 

Similarly we find from (35c), when we introduce the expression (34) for A,, : 

(x + x 2 ) f ;  + {(H + 3) + 2(n+ 2)xjf; + (n + 3)nf, 

= 2x2f;- +4(n + 1)xf;- + 2n(n + 1)f,- for n > 1. 

(37) 
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6. The solution of equation (19) to order (m/r)’ 

In order to obtain the retarded field of the dipole (23) we have to determine the solutions 
of equations (37) and (38) which vanish for x < 0. We verify directly that the solution 
of equation (37) is the coefficient of m/r3 in (27) : 

The solution of equation (38) can be written in a simple integral form. We shall 

The right-hand side of equation (38) for n = 2 is : 

a l ( x )  = 2x’f’; + 12xf; + 12f1. 

determine this form here only for the case n = 2. 

Taking into account the relation 

{xS(x,>‘ = S ( 4 ,  

XS‘ = .2S“ = 0, 

which leads to : 

we find: 

LY1(x) = 2xS(x) ( -+- i t x  ( i + x ) 2  2 +I) (1 + x ) 3  

Multiplying equation (38) corresponding to n = 2 by x 4  we find : 

{ ( ~ ~ + ~ ~ ) f ; + 2 x ~ f ~ } ’  = x4al(x) .  

The solution of this equation which vanishes for x < 0 is : 

( x 5  + x 6 ) f ;  + 2x5f2 = /: x4a1(x)  dx. 
a, 

The second integration is obtained if we multiply this equation by ( 1  + x ) / x5 .  The final 
result is 

The detailed expression for f, is rather long. We give it without calculations : 

f, = { B ( x )  lg(1 + x )  + C(x)}S (x ) ;  (42) 

1 
+-+-. 3 1  3 7 3  77 C(X) = 

2x3 4x2 2x 1 2 0 ( 1 + ~ ) z  I + ~  5 

(42’) 

It is not difficult to show that for x << 1 one can writef, as the product of S(x )  by an 
infinite polynomial in x starting with the term x 2 ,  in agreement with the formula (32). 
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For x -+ CO we find 

lim fz = +. 
X’W 

(43) 

The solution 42 of equation (9) corresponding to the dipole (23) is derived from equa- 
tions (33) and (34). We find : 

1 m mz 
2r3 r4 

1 .. 1 
$2 = ; s ( u - u o ) + ~ s ~ u - u o ) +  -+-f +++ . . . 

We have already determined the functions fl(x) and f z ( x ) .  
The following conclusion can be drawn from the expression (44) for 4z. When 

u/r  -+ CO, ie x -+ CO, the field $2 tends, in the approximation considered here, to a time- 
independent limit : 

( :33) 1 m 3m2 
lim 4z = -+-+-+Cl - . 

X’m 2r3 2r4 5r5 (45 ) 

Comparing with (16) we see that this limit is identical, to order (mlr)’, with the quantity 
& s t  which describes the static field of the constant dipole p = 1. A similar result holds 
for the quantities qhl and do, as one can prove with the help of equations (12). 

The mathematical method used in $5 5 and 6 is similar to that used by Bardeen and 
Press (1973). The fact that the field tends asymptotically to a time-independent limit 
for t + CO has been proved to order m/r by Press and Bardeen (1971). The general proof 
to all orders will be given in a forthcoming paper by Linet (1975). 

7. The Newman-Penrose conservation laws 

In order to compare the result (44) with the form (1) assumed by Newman and Penrose, 
we see at once that we need to consider the behaviour of the function TI only. According 
to (24) this function can be written as a converging power series of x for x < 1. It follows 
that in the region defined by the relation x < 1 the function c$z is of the form (1). On 
the contrary, for x 3 1 the development of fl in power series of x is not possible. Con- 
sequently the solution (44) is not of the form (1) in the region x > 1. We conclude that 
the Newman-Penrose conservation laws are valid only in the region corresponding to 
x < 1. 

The relation x = 1 is equivalent, because of the definitions (25) and (2) of x and U, to : 

c t - u o  = 3r. (46) 

(We have re-introduced in this relation the missing factor c.) In the ( t ,  r )  diagram this 
is the equation of a straight line describing the motion of a particle starting from r = 0 
at t = uo/c and moving with the velocity c/3. This straight line divides the plane ( t ,  r )  
into the regions I and I1 (figure 2). The corresponding Penrose diagram is given in Press 
and Bardeen (1971). 

The Newman-Penrose conservation laws are valid in region I but not in 11. The 
points of the future null-infinity, u/r  -+ 0 for any given value of U, are all contained in 
region I. But the points with u/r --.) CO for any given r are contained in region 11. This 
explains the fact that the field tends to a time-independent limit in spite of the restrictions 
imposed by the Newman-Penrose conservation laws. 
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c 
r 

Figure 2. The regions I and 11. 

8. The field of a smooth function p(t)  

We now consider a dipole moment represented by the smooth function p ( t )  of the form 
shown on figure 3. As we remarked in 9 2, it is sufficient to consider the case with p1 = 0, 
since for p1 # 0 we have only to add to the solution a static field corresponding to the 
constant dipole p l .  We shall determine the retarded field produced by the dipole p(t) ,  
restricting ourselves to the terms of order m/r. 

I 

Figure 3. A smooth function p(t). 

We start with the remark that the dipole p( t )  can be obtained by the superposition 
of dipoles of the form (14), according to the relation : 

We have already determined the retarded field produced by the dipole S(t - t o ) :  it is 
the field given by equation (a), which we shall denote in this section by 42(u0). Because 
of the linearity of the field equation the field corresponding to the dipole At) given by 
(47) will be: 

It follows from this formula and from the result obtained at the end of 9 6 for 42(,,,,) that 
the retarded field of the dipole At) tends, for any given r and t + CO, to the static field of 
the constant dipole p 2 .  
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After some partial integrations based on the second of equations (47) we find from 
(48) : 

l + x  
4 2 ( u , r )  = - p ( u ) + , p ( ~ ) + ~ p ( u ) + ~ ~ ~ / ( u . ) (  1 1 1 1 

r r 

I t  is to be noted that the form (1) can now be obtained only in the region of the plane 
( t ,  r )  which is on the right of the line c(t - t l )  = 3 r .  

We mention that the retarded field produced by the dipole p( t )  can be determined 
also with the help of the equation 

P(0 = J P ( t  , 1s ( t - -o )d t , ,  

h(t - t o )  being the Dirac function : 

d 
&t-t,)  = - S ( t  dt - t o ) .  

One needs in this case the field produced by the dipole b(t - to). One can show easily 
that this field is given by the derivative of - 42(u0) with respect to uo.  For a function 
p ( t )  of the form shown on figure 3 it is more convenient to use the representation (47). 

9. Formulae for the wavetail to order m/r  

Finally we shall derive and discuss the formula giving the field in the region defined by 

U > U*. 

in which there is only scattered radiation (wavetail). In this case the first two terms in 
(49) vanish. The next two terms represent the asymptotic static field, for t -+ x, to the 
order mlr. We can therefore write : 

The second term on the right-hand side of (50) describes the wavetail to order m,ir. 
From the definition of x in ( 2 5 )  we have : 

2r - - 2r -- - 
1 

l + x  2r+u-uo t + r - u o '  

Consequently we can write (50) in the following form: 

In the approximation considered here A is the advanced time and /I = constant is the 
equation of a past light cone. 
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Using the second of equations (47) we can transform (52) into the form : 

The integral (52) depends on A only and consequently it has the same value at all 
points of the (past) light cone t + r  = constant. For an oscillating dipole moment p(u)  
the function Z(1) will vanish for certain values of A. In order to determine these values 
one has to know the exact form of the function p(u). Note that the field functions 4, 
and $o, which are to be determined from equation (12), will in general not vanish for 
the same values of I .  

We shall derive the asymptotic form of the integral (52) for values of A satisfying the 
condition : 

,4 >’ lull and 14. (53) 

It will be convenient to choose the point t = 0 on the time axis so as to have 

U 2  = 0. (54) 

The assumption (53) reduces then to 

I >> Iul( = -u1.  (53‘) 

In this case the values of uo considered in the integral (52) satisfy also the condition : 

A >> IuoI. 

Consequently we can write : 

1 1 =-(l-?) 1 =$( l  1 2 - +  3-+ . . .  . U0 4 
( I  - uo)2 A 2  I A 2  

- 2  

(55) 

Introducing thedevelopment (55)in(52’)wefind, remembering thatf(u,) = dp(u,)/du,, 
p1 = Oand u2 = 0 :  

Equation (51) takes then the form: 

This formula determines the detailed manner in which the field tends to its time- 
independent limit for t + CO. 

Equation (57) leads to the following conclusions. If p z  # 0, ie if the final dipole 
moment differs from the initial one, then for any given value of r the difference $ 2  - 42s, 
tends to zero for t + CO as l / t  + r. If p 2  = 0 but p(uo)  duo # 0, then this difference 
tends to zero as l / ( t  + r)2.  If we have : 

p 2  = 0, l2 d u o )  duo = 0; 
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then this difference tends to zero as ( t  + r ) - 3  and so on : imposing on duo) the p conditions 
(p 2 3):  

p z  = 0, . . .  

we can obtain that this difference tends to zero as ( t  + r ) - ( p  + ' I .  

a development of the integral appearing in equation (50) based on the relation : 
In the neighbourhood of the future null-infinity, where we have x << 1, we can obtain 

1 
l + x  
-- - 1-x+x2-x3+ . . . .  

The difference q5* - q52sl will then appear as an infinite polynomial in U. This is a special 
case of the general result obtained for non-radiative fields (Moret-Bailly and Papapetrou 
1967, Moret-Bailly 1968). The formula (57) has the advantage of being valid in the whole 
shaded region of figure 4 and not only near null-infinity. 

t l r l  I I I 

Figure 4. The light cones U = 0 and t + r = constant 

Electromagnetic wavetails have been considered to order m/r by Rotenberg (1971), 
using a different method (double series expansion). Gravitational wavetails have been 
discussed, again to order m/r and using the method of double series expansion, by Bonnor 
and Rotenberg (1966) and by Hunter and Rotenberg (1969). A common feature of the 
results obtained in all these papers is that the scattered radiation depends on the advanced 
time t + r.  
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